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Abstract. We consider the separation of a system of finite, linear, coupled differential 
equations. We discuss first the conditions which govern this separation in the case of a 
system of two coupled equations. It is then shown how these results may be extended to the 
case of a system of a finite number of coupled equations for which a general theorem on the 
separability is formulated. 

1. Introduction 

In many-channel problems one must frequently deal with a finite system of coupled 
differential equations of the Schrodinger type from which the wavefunction for each 
channel can be extracted. Consider the following system: 

in which A is the usual Laplace operator, k: the energy of channel A and y, (r) a function 
related in a simple way to the wavefunction of channel A. UA,(r) represents the 
interaction term connecting channel A to the other channels p. 

In order to solve (1) one must proceed through the two following steps. 
(a) The equations must be decoupled, i.e. one has to find a transformation R in 

order to diagonalise the interaction term such that 

with 

2jFi = 0 ,  A , i = l , 2  , . . . ,  n, (3) 

where Zi is an operator and system (3) results from the application of R on (1). 
(b) The separated equations (3) must then be solved and the functions yA recovered 

by applying the inverse operator R-' on (Fi ) .  When the non-diagonal term U,,,(r), 
A # p, may be regarded as small compared with the diagonal one U,, ( r )  (small coupling 
case), the problem is relatively easy to handle and a number of methods of approxima- 
tion are available (Mott and Massey 1965) (Born approximation, DWBA etc). 

These approaches nevertheless become inadequate when Uhh = U,, (strong coup- 
ling case) and the situation emerges with much more complexity. Generally speaking, 
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numerical analysis is usually considered as the last recourse for this problem, although it 
does contain a number of inherent difficulties such as the question of convergence of the 
iterated solutions or the convergence in the summation over the orbital quantum 
number in the partial wave method (Lane 1980). 

Note that when allowed, the decoupling operation can be performed using one of 
the following approaches. 

(1) Decoupling with increase of the order of the differential equations. Consider, 
for example, the simplest system of two coupled equations such as 

yb(r) =fo(r)yl(r), y ;  ( r )  = f 1 ( r ) y o ( r ) .  (4) 
f o , l ( r )  are assumed to be continuous and differentiable. The separated equations will be 

Y ; - ( f : l f * ) Y I \  - f o f 1 Y *  = 0, A =0 ,  1, 

where the order of the equations has been doubled. 
( 2 )  Decoupling without increase of this order or diagonalisation of the interaction 

term. 
The present work deals with this second point of view and will be organised in the 

following manner. For the sake of clarity we begin with a system of two coupled 
differential equations, and a number of results obtained previously will be recalled, with 
the proof of a theorem which governs the separation of this system of equations. These 
results will next be extended to the general case of a system containing a finite number 
of coupled differential equations. 

2. System of two coupled equations 

Consider the following system: 

[P+fo(r)lvo =B(r)y1, [P+fl(r)lYl =B(r)yo, 

in which P is an operator of differentiation of the form 
A m  

where a ,  are constants, and B(r) ,  f o ( r ) ,  f l ( r )  are assumed to be continuous and 
differentiable. 

Theorem on the decoupling operation. For any functions B(r) ,  f o ( r ) ,  f l ( r )  the system (5) 
can always be decoupled without increase of the order of the differential equations if 
and only if B(r)  is proportional to the difference fl(r) - f o ( r ) .  

Proof. In  matrix notation let us write 

(P + 9) Y = 93 Y, 

where 
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Consider now a transformation T defined by 

T =  

where a may be any function of r. Note that 

T = XIX2 

where 
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(7) 

Using the form (7), i t  may be shown that the above equations are separated if and only if 
the following conditions are satisfied simultaneously: 

(1) [P, a l =  0 

(2) ( f i - fn )a2 -4~a- ( f i - fo )=0 .  

Condition (1) means that a must be independent of r, while (2) connects this quantity 
with B(r) ,  f n ( r ) ,  fi(r) .  

Solving this last equation, we come to the conclusion that the ratio B/ ( f l  - f o )  must 
be independent of r. 

Note also that the matrices XI, X 2  are not unitary in the sense that we do not have 
X i X t  = I ,  where I is the unit matrix, i = 1 , 2 ,  but X i X i  = m,I,  where mi is constant. 
Likewise it may be verified that 

([ ] is a commutator and a is considered here as an operator) 

TT+ = 2(1+ a2)1. 

If we define 

w = ( w + )  
w-  

then 
Y = T W  

and (5) is now separated in the form 

{ [ ~ + i ( f l  + f ~ ) l 1 + ~ [ ( f ~ - f ~ ) ~ + 4 ~ ~ 1 ~ ' ~ ~ } ~  = O  

with 

D = ( '  0 -1 '). 
Remark. In order to enlarge the discussion on the choice of T, let 

in which a ,  p, y, S may in principle be any functions of r. We can write 

TPT- ' (TY) = ~ ( 8  -s)T- ' (TY) .  

Clearly the first member of this equation is diagonal only if T is independent of r, 
agreeing therefore with the above conclusion. 
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However, in solving this equation we are led to a system of three equations with four 
unknowns, meaning that some degree of liberty in the choice of the solution is possible. 
We find that only the form (7) is appropriate for the proof. 

Example 

In the Schrodinger case, if 

P = d2/dr2, f A ( Y )  = k :  - l ( 1 - k  1 ) / r 2 ,  

then for the trivial case k o  = k l ,  lo = 11, we have a = 0, which means that T =XI and 

A =0 ,  1, 

1 
U+ = d Y  0 - Y 11, w-=S(YO+Yl) ,  

For the cases ko = k l ,  lo # l l  and k o  # k l ,  lo = 1, this theorem indicates that the coupling 
term B(r )  must be subjected to specific restrictions: for instance, it must follow the 
‘inverse square law’ for the first case and equal a constant in the second one in order to 
obtain complete separation. These are the cases which correspond to real physical 
situations, and it has been shown (Cao and van Regemorter 1978) that an exact 
analytical solution may be obtained and expressed in terms of Bessel and Neuman 
functions. 

3. Extension to the general case 

We shall first show how the previous results may be extended to the case of three 
coupled differential equations where a coupling of each channel to its nearest neigh- 
bours is assumed for the sake of clarity. In this case, the corresponding system of 
coupled equations will be 

where, as before, B, C, f A ,  A = 0, 1, 2, are assumed to be continuous and differentiable. 
Introduce now an auxiliary parameter e l  defined by 0 s e l  s 1 and replace in (9) 

C(r )  by slC(r).  Assuming then the existence of the solutions of the differential 
equations at all values of e l  defined above, we may see that yA will be modified and 
depend now on e l :  

Replacing (10) in (9) and subsequently by identification, the following sets of systems of 
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It appears now clearly that, from what was stated in the case of two equations, 
system (1 1) may be decoupled if and only if the ratio B/(fl -fo) is independent of r. Use 
of transformation T enables us then to obtain the solutions yo(r, O), yl(r ,  0), y2(r,  0). 

Replacing yl(r, 0), y2(r, 0) in (12) and using T again, we obtain the following system: 

1 ~ + t ( f ~ + f o ) + t [ ( f l - f o ) ’ + 4 ~ ~ 1 ’ / ~ } ~ : ( r ,  o ) =  ( l + a ) ~ ( r ) y z ( r ,  01, 
{ ~ + : ( f l + f o ) - t [ ( f l - f o ) ~ + 4 ~ ~ 1 ” * } ~ I  ( r ,  0) =- ( I  - a ) C ( r ) y l ( r ,  o), 

P+f2( r ) IY;( r ,  O ) =  C(r)y1(r,  01, 

where yl(r ,  0), y2(r, 0) are known from (11). These equations are separated, and after 
solving them we may recover the couple yb(r,  0), y i  ( r ,  0) by 

Y’= TW’, 

Solving (12), we then obtain y b ( r ,  0), y ;  ( r ,  0), yh(r,  0) which will be replaced in (13) and 
so on. 

Returning to (lo),  we may conclude that system (9) may be made soluble by 
expansion of the solution as a Taylor series in the parameter and with C(r)  replaced 
by &iC(r ) .  

Introduce now a second parameter E ~ ;  by replacing B(r)  by ~ 2 B ( r )  in (9) we obtain 
another set of functions yA ( r ,  E ~ ) ,  and use of the same reasoning leads to the conclusion 
that the ratio C/(f2-fl) must be equal to a constant. 

Combining these results and noting that the final solution is of the form 

we may see that the condition for obtaining this solution is that B / ( f l - f o )  and 
C / ( f 2  -fl)  must be simultaneously independent of r. 

Generally speaking, although the present approach does not yield a complete 
separation of system (9) similar to equation (7) in the two equations case, it may be 
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noted however that a separation of the equations corresponding to different powers of e ,  
( i  = 1,2) resulting from the Taylor series expansion is possible if and only if the ratio 
mentioned above is simultaneously independent of r. Whenever these last equations 
are soluble, the reconstruction of the final solution is then possible. 

It is now relatively easy to extend this method to the general case and formulate the 
following statement. 

Consider a system of coupled differential equations 

[ ~ + f h ( r ) I ~ A ( r )  = C G F ( r ) y F ( r ) ,  A , / L = O 0 , l , 2  , . . . .  
F # A  

For any f A  ( r ) ,  C A F ( r )  continuous and differentiable, this system can always be soluble in 
the above sense if and only if the ratio CAw/(fF - f , )  is simultaneously independent 
of r. 

4. Conclusion 

For a system of coupled differential equations in the strong coupling case, it seems to us 
that one of the merits of this theorem is that it provides a set of conditions which governs 
the complete separation of the equations, thus putting the problem on a more rational 
basis. This is particularly transparent in the case of a system of two coupled differential 
equations, but even in the case where these conditions are only partially fulfilled, the use 
of this method in connection with physical arguments may sometimes give hints in the 
search for an appropriate method of approximation. 
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